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Abstract

Billions of barrels of oil have been found since 2001 in the Paleocene-Eocene, Wilcox-equivalent "Whopper Sand" turbidites,
deposited on the Gulf of Mexico abyssal plain, anomalously far (100s km) from the coeval shelf margin. Major evaporative drawdown
(1-2 km), after tectonic damming of the Gulf (Cuban orogeny), has been proposed to explain (1) turbidite deposition so far basinward
(shore advance), and (2) deep paleocanyons incising the shelf margin and slope. This model suffers from a lack of associated
evaporites and from the unlikelihood of southern Gulf aridity (evaporation) outweighing inflow from humid (peaty) northern deltas.

An alternative, "opposite", low-salinity model is as follows. During three Paleocene-Eocene eustatic superlows, each involving a fall
of about 100 m (Haq chart), world sea level fell toward or below the level of the Gulf's lowest inlet/outlet (sill), such that inflow from
the ocean was reduced or cut (cf. Quaternary Black Sea). River inflow exceeded evaporation, desalinating the Gulf, turning it brackish
or even, at times, fresh ("Lake Mexico" proposed here). Reduced salinity meant that river-fed (hyperpycnal) turbidity currents of long
duration (weeks), already known to transport silt far out (100s km) onto modern marine abyssal plains, would have become more
frequent and more sustained, carving the canyons and supplying the Whopper. Coriolis turning of unchanneled basin-floor flows
impedes prediction of proximality trends, vital for exploration and development. Proper outcrop analogs of the Whopper low-salinity
abyssal hyperpycnites may exist only in collisional accretionary complexes, because abyssal plains are ultimately subducted. Partial
analogs are Carboniferous and Permian formations interpreted by the author as lacustrine hyperpycnites, but deposited above storm
wave base (Brushy Canyon, Bude, Ross, Laingsburg, Skoorsteenberg)
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INTRODUCTION

Billions of barrels discovered since 2001 in Paleogene (Wilcox-
equivalent) “Whopper Sand”

GoM major evaporative drawdown (1-2 km) has been proposed
to explain (A) turbidite deposition anomalously far (100s km)
from coeval shelf edge & (B) deep canyons in paleo-shelf/slope

Drawdown models suffers from (A) lack of Paleogene

evaporites in GoM & (B) unlikelinood that Gulf evaporation
outweighed river inflow at northern GoM deltas
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Figure 1. General map of the tectonic setting of the Gulf of Mexico region at the time of the Paleocene-Eocene
boundary (~56 Ma, after Pindell and Kennan, 2001), showing localities noted in the text. Note the way in which the
‘Cuban Orogemblocked the entrance to the Gulf of Mexico.
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Figure 2. Generalized stratigraphic column for the Paleogene
of the Texas coastal zone; modified from Galloway et al. (2000).
The time scale is that of Berggren et al. (1995). E = early; M =

mlddle; L = Iate- Fig. 13.—Cenozoic cyele chart modified after Hag and others (1987) showing age of Gulf coastal plain cxamples discussed herein.




GULF OF MEXICO, NEOGENE: LOW SPILL POINT (SILL);
SALINITY MARINE DURING EUSTATIC HIGHS OR LOWS
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GULF OF MEXICO, PALEOCENE-EOCENE,
HIGH SILL, EUSTATIC-LOWSTAND MODELS:
OPEN LAKE vs CLOSED LAKE

fall 10s m lake outflow—=> eustatic fall
level, I <100m

lowstand water
sill high,

"open-lake" model, i.e. S Strait
inflow exceeds evap'n; uwannee Strai

lake freshens with time, (Chen 1965);
cf. Quat Black Sea Yucatan Strait non-

existent (Cuban
Orogen)

Atlantic

lowstand water level, evaporative drawdown
model; implies "closed lake", i.e. evap'n exceeds
inflow, lake hypersaline, cf. Miocene Mediterranean




GoM: OPEN-LAKE MODEL during
Paleocene-Eocene eustatic lowstands
(implies river/rainfall inflow exceeded evap'n)

preceding eustatic highstand (GoM marine)
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Fia. 11.—Hypothetical diagram showing a curve of fluctuating velocity related to a quasi-steady underflow and its consequences for sedimentation at a fixed point in
the basin. Three main phases are recognized: Acceleration phase (AP): accumulation of intervals 1 to 7 by an accelerating and fluctuating flow. Erosion-plus-bypass phase
(EP): erosion of some of the preceding deposits. Deceleration phase (DP): accumulation of intervals 9 to 15 from a decelerating and fluctuating flow.
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CONCLUSIONS

-radical “sea-level fall of as much as 6,000 ft” (Berman 2008)
In Paleogene GoM not necessary

-facies predictions can be made, using Zavala hyperpycnal
model, and making allowance for Coriolis deflection

-biostrat problems likely, due to (A) canyon incision

(reworking), and (B) lowered salinity (brackish/fresh
microfauna & microflora
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